If it's not what You are looking for type in the equation solver your own equation and let us solve it.
(40y^2+10y)/5y=0
Domain of the equation: 5y!=0We multiply all the terms by the denominator
y!=0/5
y!=0
y∈R
(40y^2+10y)=0
We get rid of parentheses
40y^2+10y=0
a = 40; b = 10; c = 0;
Δ = b2-4ac
Δ = 102-4·40·0
Δ = 100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{100}=10$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(10)-10}{2*40}=\frac{-20}{80} =-1/4 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(10)+10}{2*40}=\frac{0}{80} =0 $
| 3(x-4)+5(x+6)=12 | | 4x-49=101 | | a+0.25=1.33 | | 15x-40=3x-64 | | -12=7(x-7) | | 6y-5=8y-4 | | (x+2)³=13 | | 59=3v-11 | | 3/7x-11=-12 | | 6(f+9)=60 | | (x+1)(4x-1)+(x+1)(5x+3)=0 | | 85-2x=5-10 | | 5y-13=36 | | 20x-32=17x+18 | | 13b+11=8b+28 | | 4(x+3)=3(x-1) | | 3x-17=9x+2 | | z/7+4=2 | | 9-2x=5=5 | | 9h+21=51 | | 2x^2-17x-109=0 | | 12y+5=-6/y-1 | | 8(2+v)+33=10v | | 55+a=24 | | 1/3y+12=17 | | 8/2x+1=3/2 | | 7x4=30-()= | | 5x-8=2(x+5) | | 5x-8=2(x+8) | | 15−0.5(4x−2)+4x=17 | | 1/2z-7=2 | | 4x-2=29+1x |